
Reduced-memory training and deployment of deep
residual networks by stochastic binary quantization

cls-lab.org

1Computational Learning Systems Laboratory
School of Information Technology &

Mathematical Sciences
University of South Australia

Mark D. McDonnell1, Ruchun Wang2 and André van Schaik2

2BENS Laboratory
MARCS Institute,

Western Sydney University, Australia

Motivation and
Background

Background

• Deep convolutional neural networks
– Many parameters
– Many sequential layers

• Following training:
– Learnt parameters ~10⎯100 MB

• During training with BP+SGD:
– Can easily max the 12 GB of RAM in GPUs
– Mainly temporary storage from FP for use in BP

Motivation

• How can we minimize MB required during
training with BP+SGD?

• Different goal to model compression following
training…
– but we consider this too
– model compression methods offer ways to reduce

RAM access, if not usage, during BP+SGD
• ”Compressed Learning”

Benefits of reducing RAM use
during BP+SGD

• Train larger models on a single GPU
• BP+SGD for large models on mobile devices
• Is it always possible/desirable to train at the

data center?
– Personalized or highly-secure fine-tuning
– rapid-retraining
– remote deployment: no comms
– continuous learning with streaming data…

Low bit-width deep CNNs: Prior results

• Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” Arxiv:1602.07360, 2016

• Courbariaux, Bengio and David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,”
Arxiv:1511.00363, 2015.

• Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” Arxiv:1609.07061.

• Merolla et al., “Deep neural networks are robust to weight
binarization and other non-linear distortions,” Arxiv:1606.01981,
2016.

• Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” Arxiv:1603.05279, 2016.

• …

Low bit-width deep CNNs: Prior results

1. Model compression
– Easy to compress convolution parameters to

a single bit following training
– little accuracy penalty

2. Compressed learning
– Model compression doesn’t help much:

parameters updated using full precision
– Gradients: need 6-12 bits
– Activations: Use binary nonlinearity layers

instead of ReLUs; incurs an accuracy penalty

Our Approach

Our approach for model compression

• Similar to others
– use the sign of weights for FP and BP
– Use full-precision weights for updates

• Different to others
– we found no need to normalise [Rastegari et al]
– We use new tricks from full-precision CNN training
– Net result: large improvements on CIFAR-10

• Our improvements come from:
– Using wide ResNets1 as a baseline:
– Using standard “light” data augmentation
– Using a “warm-restart” learning-rate schedule

1S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

Our approach for model compression

Our approach for compressed learning

• Inspiration from computational
neuroscience: “Feedback alignment”

• Key points:
– Forward propagation remains unchanged
– BP with inexact gradient calculations

Lillicrap et al. “Random synaptic feedback
weights support error backpropagation for
deep learning,” Nature Communications,
vol. 7, p. 13276, 2016.

“CINE: Computation-inspired
neurobiological elements!”

Thought-provoking 2016 Hinton talk:
“Can the brain do backpropagation?”

“Feedback alignment”

• Key points we borrow from feedback alignment:
– Forward propagation remains unchanged
– BP with inexact gradient calculations

• Different to others:
– We keep ReLU activations, A, for forward pass
– We convert to a single bit, Aq only for use in the

backward pass
• Our single-bit quantization of activations is

stochastic:

Aq = I(A + noise >1)

Our approach for compressed learning

• Benefits E.g. 20 layer resnet on imagenet
• 32 bit precision: BP+SGD needs 1.8GB
• 1 bit precision: 1.8 GB  56 MB

Our approach for compressed learning

Our Results

Our Results: Model Compression for CIFAR
(single-bit weights following training)

Method Depth Width #params CIFAR-10 CIFAR-100
32-bit Wide ResNet 28 10 36.5M 4.00% 19.25%
Binary connect
(VGG net)1

9 8 10.3M 8.27% N/A

Weight binarization2

(VGG net)
8 8 11.7M 8.25% N/A

BWN (VGG net)3 8 8 11.7M 9.88% N/A
Our Wide Resnet 20 4 4.3M 6.34% 23.79%
Our Wide Resnet 20 10 26.8M 4.48% 22.28%

We used only 63 epochs for width=4 and 127 for width=10

1Courbariaux et al., “Binaryconnect: Training deep neural networks with binary weights during propagations,” Arxiv:1511.00363, 2015.
2Hubara et al., “Quantized neural networks: Training neural networks with low precision weights and activations,” Arxiv:1609.07061.
3Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” Arxiv:1603.05279, 2016.

Our Results: Model Compression for CIFAR
(single-bit weights following training)

Method Depth Width #params Top-1 Top-5
32-bit ResNet 20 1 11.5M 30.70% 10.80%
BNN (googlenet)1 13 - 52.9% 30.90%
BWN (ResNet)2 20 1 11.5M 39.2% 17.0%
Our Resnet 20 1 11.5M 44.48% 20.9%

We need to train for longer…

1Hubara et al., “Quantized neural networks: Training neural networks with low precision weights and activations,” Arxiv:1609.07061.
2Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” Arxiv:1603.05279, 2016.

Our Results: Compressed Learning for CIFAR

Method Depth Width #params CIFAR-10 CIFAR-100
32-bit Wide ResNet 28 10 36.5M 4.00% 19.25%
BNN (GoogleMet)1 9 8 10.3M 10.15% N/A
Xnor-net (ResNet)2 8 8 11.7M 10.17% N/A
Our Wide Resnet 20 4 4.3M 6.86% 25.93%
Our Wide Resnet 20 10 26.8M 5.43% 23.01%
Our Wide Resnet
+ model compression

20 10 26.8M 5.55% 23.7%

1Hubara et al., “Quantized neural networks: Training neural networks with low precision weights and activations,” Arxiv:1609.07061.
2Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” Arxiv:1603.05279, 2016.

Summary

Model compression

• We achieved SOTA error rates on CIFAR-10
when using 1-bit weights at test time

• Same as error rates for full-precision!
• Achieved using far fewer training epochs

Learning compression

• 32 x reduced memory during BP+SGD
• Error rates fell by only ~1% (absolute)
• Drawback: cannot use xnor approache
• Advantage: better and faster learning

Next steps

• More training on Imagenet
• Faster BP+SGD using improved methods of

feedback alignment
• Theory for why our approach works
• Add low bit-width gradients and updates
• Ultimately: low-power hardware BP+SGD
• Applications: not just supervised classifiers!

Thanks for your attention!

mark.mcdonnell@unisa.edu.au

cls-lab.org

Mark D. McDonnell1, Ruchun Wang2 and André van Schaik2

	Slide Number 1
	Motivation and Background
	Background
	Motivation
	Benefits of reducing RAM use during BP+SGD
	Low bit-width deep CNNs: Prior results
	Low bit-width deep CNNs: Prior results
	Our Approach
	Our approach for model compression
	Our approach for model compression
	Our approach for compressed learning
	Slide Number 12
	Our approach for compressed learning
	Our approach for compressed learning
	Our Results
	Our Results: Model Compression for CIFAR�(single-bit weights following training)
	Our Results: Model Compression for CIFAR�(single-bit weights following training)
	Our Results: Compressed Learning for CIFAR
	Summary
	Model compression
	Learning compression
	Next steps
	Slide Number 23

