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Motivation and 
Background



Background

• Deep convolutional neural networks
– Many parameters
– Many sequential layers

• Following training:
– Learnt parameters  ~10⎯100 MB

• During training with BP+SGD:
– Can easily max the 12 GB of RAM in GPUs
– Mainly temporary storage from FP for use in BP



Motivation

• How can we minimize MB required during
training with BP+SGD?

• Different goal to model compression following
training…
– but we consider this too
– model compression methods offer ways to reduce 

RAM access, if not usage, during BP+SGD
• ”Compressed Learning”



Benefits of reducing RAM use 
during BP+SGD

• Train larger models on a single GPU
• BP+SGD for large models on mobile devices
• Is it always possible/desirable to train at the 

data center?
– Personalized or highly-secure fine-tuning
– rapid-retraining
– remote deployment: no comms
– continuous learning with streaming data…



Low bit-width deep CNNs: Prior results

• Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer 
parameters and <1mb model size,” Arxiv:1602.07360, 2016

• Courbariaux, Bengio and David, “Binaryconnect: Training deep 
neural networks with binary weights during propagations,” 
Arxiv:1511.00363, 2015.

• Hubara et al., “Quantized neural networks: Training neural networks 
with low precision weights and activations,” Arxiv:1609.07061.

• Merolla et al., “Deep neural networks are robust to weight 
binarization and other non-linear distortions,” Arxiv:1606.01981, 
2016.

• Rastegari et al., “Xnor-net: Imagenet classification using binary 
convolutional neural networks,” Arxiv:1603.05279, 2016.

• …



Low bit-width deep CNNs: Prior results

1. Model compression
– Easy to compress convolution parameters to 

a single bit following training
– little accuracy penalty

2. Compressed learning
– Model compression doesn’t help much: 

parameters updated using full precision
– Gradients: need 6-12 bits
– Activations: Use binary nonlinearity layers 

instead of ReLUs; incurs an accuracy penalty



Our Approach



Our approach for model compression

• Similar to others
– use the sign of weights for FP and BP
– Use full-precision weights for updates

• Different to others
– we found no need to normalise [Rastegari et al]
– We use new tricks from full-precision CNN training
– Net result: large improvements on CIFAR-10



• Our improvements come from:
– Using wide ResNets1 as a baseline:
– Using standard “light” data augmentation
– Using a “warm-restart” learning-rate schedule

1S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

Our approach for model compression



Our approach for compressed learning

• Inspiration from computational 
neuroscience: “Feedback alignment”

• Key points: 
– Forward propagation remains unchanged
– BP with inexact gradient calculations



Lillicrap et al.  “Random synaptic feedback 
weights support error backpropagation for 
deep learning,” Nature Communications, 
vol. 7, p. 13276, 2016.

“CINE: Computation-inspired 
neurobiological elements!”

Thought-provoking 2016 Hinton talk: 
“Can the brain do backpropagation?”

“Feedback alignment”



• Key points we borrow from feedback alignment: 
– Forward propagation remains unchanged
– BP with inexact gradient calculations

• Different to others:
– We keep ReLU activations, A, for forward pass
– We convert to a single bit, Aq only for use in the 

backward pass
• Our single-bit quantization of activations is 

stochastic:

Aq = I(A + noise >1)

Our approach for compressed learning



• Benefits E.g.  20 layer resnet on imagenet
• 32 bit precision: BP+SGD needs 1.8GB
• 1 bit precision: 1.8 GB  56 MB

Our approach for compressed learning



Our Results



Our Results: Model Compression for CIFAR
(single-bit weights following training)

Method Depth Width #params CIFAR-10 CIFAR-100
32-bit Wide ResNet 28 10 36.5M 4.00% 19.25%
Binary connect 
(VGG net)1

9 8 10.3M 8.27% N/A

Weight binarization2 

(VGG net)
8 8 11.7M 8.25% N/A

BWN (VGG net)3 8 8 11.7M 9.88% N/A
Our Wide Resnet 20 4 4.3M 6.34% 23.79%
Our Wide Resnet 20 10 26.8M 4.48% 22.28%

We used only 63 epochs for width=4 and 127 for width=10

1Courbariaux et al., “Binaryconnect: Training deep neural networks with binary weights during propagations,” Arxiv:1511.00363, 2015.
2Hubara et al., “Quantized neural networks: Training neural networks with low precision weights and activations,” Arxiv:1609.07061.
3Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” Arxiv:1603.05279, 2016.



Our Results: Model Compression for CIFAR
(single-bit weights following training)

Method Depth Width #params Top-1 Top-5
32-bit ResNet 20 1 11.5M 30.70% 10.80%
BNN (googlenet)1 13 - 52.9% 30.90%
BWN (ResNet)2 20 1 11.5M 39.2% 17.0%
Our Resnet 20 1 11.5M 44.48% 20.9%

We need to train for longer…

1Hubara et al., “Quantized neural networks: Training neural networks with low precision weights and activations,” Arxiv:1609.07061.
2Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” Arxiv:1603.05279, 2016.



Our Results: Compressed Learning for CIFAR

Method Depth Width #params CIFAR-10 CIFAR-100
32-bit Wide ResNet 28 10 36.5M 4.00% 19.25%
BNN (GoogleMet)1 9 8 10.3M 10.15% N/A
Xnor-net (ResNet)2 8 8 11.7M 10.17% N/A
Our Wide Resnet 20 4 4.3M 6.86% 25.93%
Our Wide Resnet 20 10 26.8M 5.43% 23.01%
Our Wide Resnet
+ model compression

20 10 26.8M 5.55% 23.7%

1Hubara et al., “Quantized neural networks: Training neural networks with low precision weights and activations,” Arxiv:1609.07061.
2Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” Arxiv:1603.05279, 2016.



Summary



Model compression

• We achieved SOTA error rates on CIFAR-10 
when using 1-bit weights at test time

• Same as error rates for full-precision!
• Achieved using far fewer training epochs



Learning compression

• 32 x reduced memory during BP+SGD
• Error rates fell by only ~1% (absolute)
• Drawback: cannot use xnor approache
• Advantage: better and faster learning 



Next steps

• More training on Imagenet
• Faster BP+SGD using improved methods of 

feedback alignment 
• Theory for why our approach works
• Add low bit-width gradients and updates 
• Ultimately: low-power hardware BP+SGD
• Applications: not just supervised classifiers!



Thanks for your attention!

mark.mcdonnell@unisa.edu.au
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