Reduced-memory training and deployment of deep residual networks by stochastic binary quantization

Mark D. McDonnell¹, Ruchun Wang² and André van Schaik²

cls-lab.org

¹Computational Learning Systems Laboratory School of Information Technology & Mathematical Sciences University of South Australia

²BENS Laboratory MARCS Institute, Western Sydney University, Australia

Motivation and Background

Background

- Deep convolutional neural networks
 - Many parameters
 - Many sequential layers
- Following training:
 - Learnt parameters ~10–100 MB
- During training with BP+SGD:
 - Can easily max the 12 GB of RAM in GPUs
 - Mainly temporary storage from FP for use in BP

Motivation

- How can we minimize MB required <u>during</u> training with BP+SGD?
- Different goal to model compression <u>following</u> training...
 - but we consider this too
 - model compression methods offer ways to reduce RAM access, if not usage, during BP+SGD
- "Compressed Learning"

Benefits of reducing RAM use during BP+SGD

- Train larger models on a single GPU
- BP+SGD for <u>large</u> models on mobile devices
- Is it always possible/desirable to train at the data center?
 - Personalized or highly-secure fine-tuning
 - rapid-retraining
 - remote deployment: no comms
 - continuous learning with streaming data...

Low bit-width deep CNNs: Prior results

- Iandola et al., "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size," Arxiv:1602.07360, 2016
- Courbariaux, Bengio and David, "Binaryconnect: Training deep neural networks with binary weights during propagations," Arxiv:1511.00363, 2015.
- Hubara et al., "Quantized neural networks: Training neural networks with low precision weights and activations," Arxiv:1609.07061.
- Merolla et al., "Deep neural networks are robust to weight binarization and other non-linear distortions," Arxiv:1606.01981, 2016.
- Rastegari et al., "Xnor-net: Imagenet classification using binary convolutional neural networks," Arxiv:1603.05279, 2016.

• ...

Low bit-width deep CNNs: Prior results

1. Model compression

- Easy to compress convolution parameters to a single bit following training
- little accuracy penalty

2. Compressed learning

- Model compression doesn't help much: parameters updated using full precision
- Gradients: need 6-12 bits
- Activations: Use binary nonlinearity layers instead of ReLUs; incurs an accuracy penalty

Our Approach

Our approach for model compression

Similar to others

- use the sign of weights for FP and BP
- Use full-precision weights for updates

Different to others

- we found no need to normalise [Rastegari et al]
- We use new tricks from full-precision CNN training
- Net result: large improvements on CIFAR-10

Our approach for model compression

- Our improvements come from:
 - Using wide ResNets¹ as a baseline:
 - Using standard "light" data augmentation
 - Using a "warm-restart" learning-rate schedule

¹S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

Our approach for compressed learning

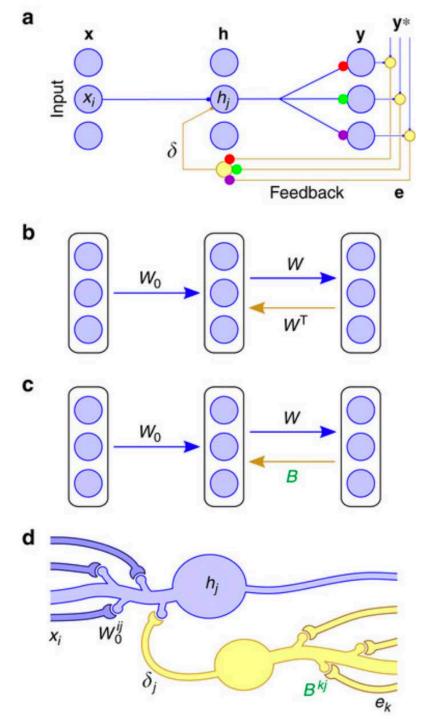
- Inspiration from computational neuroscience: "Feedback alignment"
- Key points:
 - Forward propagation remains unchanged
 - BP with inexact gradient calculations

"Feedback alignment"

Lillicrap et al. "Random synaptic feedback weights support error backpropagation for deep learning," *Nature Communications*, vol. 7, p. 13276, 2016.

"CINE: Computation-inspired neurobiological elements!"

Thought-provoking 2016 Hinton talk: "Can the brain do backpropagation?"



Our approach for compressed learning

- Key points we borrow from feedback alignment:
 - Forward propagation remains unchanged
 - BP with <u>inexact</u> gradient calculations
- Different to others:
 - We keep ReLU activations, A, for forward pass
 - We convert to a single bit, A_q only for use in the backward pass
- Our single-bit quantization of activations is stochastic:

$$A_q = I(A + noise > 1)$$

Our approach for compressed learning

- Benefits E.g. 20 layer resnet on imagenet
 - 32 bit precision: BP+SGD needs 1.8GB
 - 1 bit precision: 1.8 GB → 56 MB

Our Results

Our Results: Model Compression for CIFAR (single-bit weights following training)

Method	Depth	Width	#params	CIFAR-10	CIFAR-100
32-bit Wide ResNet	28	10	36.5M	4.00%	19.25%
Binary connect (VGG net) ¹	9	8	10.3M	8.27%	N/A
Weight binarization ² (VGG net)	8	8	11.7M	8.25%	N/A
BWN (VGG net) ³	8	8	11.7M	9.88%	N/A
Our Wide Resnet	20	4	4.3M	6.34%	23.79%
Our Wide Resnet	20	10	26.8M	4.48%	22.28%

We used only 63 epochs for width=4 and 127 for width=10

¹Courbariaux et al., "Binaryconnect: Training deep neural networks with binary weights during propagations," Arxiv:1511.00363, 2015. ²Hubara et al., "Quantized neural networks: Training neural networks with low precision weights and activations," Arxiv:1609.07061.

³Rastegari et al., "Xnor-net: Imagenet classification using binary convolutional neural networks," Arxiv:1603.05279, 2016.

Our Results: Model Compression for CIFAR (single-bit weights following training)

Method	Depth	Width	#params	Top-1	Top-5
32-bit ResNet	20	1	11.5M	30.70%	10.80%
BNN (googlenet) ¹	13	-		52.9%	30.90%
BWN (ResNet) ²	20	1	11.5M	39.2%	17.0%
Our Resnet	20	1	11.5M	44.48%	20.9%

We need to train for longer...

¹Hubara et al., "Quantized neural networks: Training neural networks with low precision weights and activations," Arxiv:1609.07061.

²Rastegari et al., "Xnor-net: Imagenet classification using binary convolutional neural networks," Arxiv:1603.05279, 2016.

Our Results: Compressed Learning for CIFAR

Method	Depth	Width	#params	CIFAR-10	CIFAR-100
32-bit Wide ResNet	28	10	36.5M	4.00%	19.25%
BNN (GoogleMet) ¹	9	8	10.3M	10.15%	N/A
Xnor-net (ResNet) ²	8	8	11.7M	10.17%	N/A
Our Wide Resnet	20	4	4.3M	6.86%	25.93%
Our Wide Resnet	20	10	26.8M	5.43%	23.01%
Our Wide Resnet + model compression	20	10	26.8M	5.55%	23.7%

¹Hubara et al., "Quantized neural networks: Training neural networks with low precision weights and activations," Arxiv:1609.07061.

²Rastegari et al., "Xnor-net: Imagenet classification using binary convolutional neural networks," Arxiv:1603.05279, 2016.

Summary

Model compression

- We achieved SOTA error rates on CIFAR-10 when using 1-bit weights at test time
- Same as error rates for full-precision!
- Achieved using far fewer training epochs

Learning compression

- 32 x reduced memory during BP+SGD
- Error rates fell by only ~1% (absolute)
- Drawback: cannot use xnor approache
- Advantage: better and faster learning

Next steps

- More training on Imagenet
- Faster BP+SGD using improved methods of feedback alignment
- Theory for why our approach works
- Add low bit-width gradients and updates
- Ultimately: low-power hardware BP+SGD
- Applications: not just supervised classifiers!

Thanks for your attention!

mark.mcdonnell@unisa.edu.au

cls-lab.org

Mark D. McDonnell¹, Ruchun Wang² and André van Schaik²

